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Mass transport in the process of gas evaporation and filtration through a por- 
ous body is studied using methods of the kinetic theory of gases. Theoretical 
results are compared with experiment. 

The flow of gases through highlyporous media is often described by the "dust gas" model 
[1-3], in which the real porous body is replaced by a homogeneous system of immobile spherical 
particles arrayed in unordered fashion. Gas filtration through such a medium is considered 
as mutual diffusion of the two gases, with the molecules of the one component, the body skel- 
eton, having a size and mass significantly greater than the corresponding values for the real 
gas molecules. As a rule, published studies using this theory have considered the kinetic 
theory of gas flow in an infinite porous body, i.e., without consideration of the effects of 
coupling the porous body to an external medium. An expression for gas flow applicable over 

Knudsen numbers can then be written in the form of a superposition of 
flows. We will note that is then necessary to introduce empirical coef- 

the entire range of 
Knudsen and viscous 
ficients. 

Kinetic theory 
media [4-9]. Using 
tions for dispersed 

methods have also been used to describe transport phenomena in dispersed 
the method proposed in [i0], [9] obtained a system of aerodynamic equa, 
media. In [6] the dynamics of a gas suspension were studied for the case 

of a free molecular flow over particles, while [7] found a closed system of kinetic equations 
for a fluldized bed. We will note that within the framework of the theory developed in [7], 
one cannot directly transform to the case of flow in a porous medium, since the kinetic equa- 
tion for the particles then decays, so that it is necessary to introduce additional expres- 
sions to describe the gas-partlcle interaction. 

The present study will use the dust gas model and the kinetic equation to formulate and 
solve the boundary problem of thekinetic theory of gases for mass transport in a porous body 
of finite thickness with consideration of particle resistance, i.e., the convective flow com- 
ponent. We will consider slow isothermal flow of avapor through a porous layer of thickness 
L, bounded on the one side by the surface of the evaporating liquid, and on the other by 
liquid vapor, at a pressure PL, such that X = L (PL < po) is known (Fig. I). In this prob- 
lem there are three characteristic dimensions: the porous body thickness L, the particle 
radius R, and the mean pore clearance k d [ii], which is the mean molecular free path length 

With respect to the immobile spheres ha = 4 8 R �9 Thus, the flow is characterized by two 
3 1--8 

Knudsen numbers: Kn = k/R and Kn d = kd/R, which may be of differing orders of magnitude. 

For the gas molecule distribution function f within the porous body we write an equation 
with consideration of the "external" force F, which isthe resultant of the collective inter- 
action of gas molecules with particles: 

. of P of ~ - ~  + - o. ( l )  
m a~ 

As a result, the kinetic problem of gas flow in a porous medium with complex gas--solid boun- 
dary is replaced by a one-dimensional problem, so that within the kinetic equation in place 
of the collision integral we introduce a term with the "external" force F, defined in the 
following manner. From the solution of the kinetic theory problem of gas flow over an in- 
dividual spherical particle we calculate the force F d, which acts on this particle in the 
case of diffuse reflection of the gas molecule from its surface [12]: 
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Fn = FsAx(Kn) = 3n~.pR[vAx (Kn), 
where 

A,(Kn) = 15--3Kn + 3(8 + ~)Kn2 
15 4- 12Kn 4- 18Kn z 4_ 54Kn a 

Then the value of F can be obtained from the expression 

(2) 

enF = - -  naFa, (3) 

where 

.d = (1 - -  8)I 3 nRs. (4) 

We then approximate the desired distribution f in the boundary problem in question in 
a two-slded Maxwell distribution 

, 
f = (5)  mv" / m } 

f , = t h ~ 2 - - ~ /  exp - -  2kT [(~x 0.,) 2 + ~ , + ~ 1 ,  ~x<O 

and define nx, n2, vx, va using four moment equations of the form [13] 

d F Ocp 
dX  ~ .~ fd~  --  m 3"[ - ~  d~ = O. (6) 

For ~ we choose 1, ~x, ~*, ~x s. It follows, in particular, from Eq. (6) that ~--I ~=fd~= 
const, i.e., the gas velocity in the porous body is constant in the linear approximation and 
equal to 

I C' v = ~[Jd~ = (7) 
no 

We now transform to the dimenslonless quantities x = X/L and uj, ui(i = i, 2), cJ (J = 
x, y, Z), where v i = (n i --no)/no, u i = (m/2kT)X/Zvi, cj = (m/2kT)X72~j. Using the ~ values 
presented above, in the linear approximation we obtain from Eqs. (5), (~) 

V l  .J[_ ~ [ 1 / 2 U l  _ _  .V2 .~- ~ I / 2 u l  = C ,  

v1+ z l - - V T T U l + V ~ - - - - u ~  + --0,  (8) 
dx ~l /2 8 

5nl/2 5~1/2 
v~ + " - ' T -  u , - - '~2  + - - - T -  us = D,  

d ( , , _b  16 16 ) AC 
_ _  12 2 -Jf- dx "~'~'fT~ u, 4- v2 3n I / ~ 8 = 0 ,  

where 

We find A from the expression 

c = c ' / '  2=m '/'/'~ 

kT 
F----- AC, which follows from Eqs. (2)-(4), 

2Ls 

A =9(1  ~_) L _  KnA~(Kn). 
n R 

(7): 

(9) 

(i0) 

Solving system (8) ,  we find 
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AC x._k 5 C _  E AC 5 E 
vl = ---2e 2 - ~  , v2~ ----x28 - - - -2  C + 2 D + - - 2  ' 

2 B (11)  

The constants B, C, D, E are defined from the boundary conditions at x = 0 and x = I, which 
in turn are obtained by calculating certain moments of the one-sided distribution functions 
on the boundary. These functions can be written in the following manner: 
atx=O 

= exp {-- c~}, c~ > 0, (12) [~ no[e 4-, (1 - - e ) ( l  -1- Vr~ )] \2akT] 

atx=l 

' [ m la/2exp{_c2}, c=<O, 12 = elL + ( 1  e) n o (1 + Vr2 ) s ] (13) 

where the quantities Vri are defined from the condition of impermeability of the solid par- 
tlcles. 

v~l = v~--'al/~u~, (14)  

v~2 = vl  + al /~ul ,  (15) 

and fL is a Maxwellian function with parameters nL, u L (where u L is the unknown dimensionless 
gas velocity above the porous body). 

It follows from Eq. (12) with consideration of Eqs. (5), (14), that at x = 0 

~ = (1 - - ~ ) ( ~ - -  ~ /2u~) ,  u~ = O~ 

We find yet two more boundary conditions by calculating the moments of Eq. 
relative to c x and Cx ca and using Eq. (15): 

(1 - -  e)(vl + ~1 /2u0 - - (~ ,~ - -  ~ / 2 )  + ~ (vL- -  ~I/2uL) = O, 

(2~/ ~A-e V L - - f f L  (1 - -  e) (v, -5 z~ l/2u0 __ v~ 4 4 ~ 05 

(16) 

(13) at x = i 

(17 )  

where v L = (n L- no)/no. 

Substituting Eq. (ii) in Eqs. (16), (17), we obtain a system of four linear algebraic 
equations for determination of B, C, D, E, solution of which allows us to find ~i, ul from 
Eq. (ll). We thus determine the gas velocity in the porous body from Eqs. (7), (9), and its 

density: 

C n = n ~ 1 7 6  2 , / 2 ) -  (18)  u 291/2, 

Thus for the final solution of the conjugate kinetic problem for a specified nL it is 
necessary to determine the velocity u L. To do this we use the law of conservation of gas 
mass upon transition through the boundary x = i, i.e., the equality of gas flows in the por- 

n t n 
ous body and the external medium: --uL=e--u. The presence of the E in this expression is ex- 

n0 nO 
plained by the fact that when the kinetic equation is used the macroscopic gas parameters 
are defined per unit vos of the entire porous body, and the portion of the volume occupied 
by the particles is considered only in Eq. (3) for the force F. Therefore, in calculating 
the real gas flow through a unit surface within the porous body it is necessary to multiply 
n/no by c, i.e., in.the linear approximation 

eC 
uL = e u  = - -  ( 1 9 )  

2~1/2" 

We note that in the present simplified formulation the Knudsen layer on the boundary 
x = i with the external medium is not considered. It may be considered by using the con- 
servation laws in the gaseous phase. The solution of such a problem, which is obtained by 

numerical methods, will not be presented here. 
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TABLE i. 
Evaporation from Porous Body with e = 0.9, L/R = i00~ 

Quantities u L in [n(1) -nL]/(no- n L) vs Kn for 

(n L- n o ) / n o  = - 0 . 1 .  

Kn 

.u t -10 2 

n ( l  )--a t 

500 

0,239 0,239 

0,0221 0,0221 

5 l 
�9 0,256 0,314 

0,0238 0,0292 

no - -  n L 

~Kn 
u L - 10~ 

n(l)--n L 

I00 

0,240 

0,0222 

0,5 
0,412 

0,0377 

50 

O, 241 

O, O223 

0,1 
1,139 

0,105 

30 

0,242 

0.,0224 

0,01 
2,732 

O, 252 

20 ::1 

0,244 I 
O, 0225 

O,OOI 
3,221 

O, 298 
no- -n  L 

10 

0;248 

0,0230 

0,000' 
3,281 

0,303 

The presence of a nonequilibrium layer at the boundary x = I on the porous body side 
leads, in particular, to a discontinuity in gas density n(1) --nL. On the basis of Eqs. (18), 
(ii), (19) we write an equation for [~(i) -- 9L]/9 L = [n(1) -- nL]/(n L -- no): 

= -- - -  (20) v ( 1 ) - - v z  1 + 1 + - ~ -  n B 
V L 8'VL 

T h i s  d e n s i t y  ( p r e s s u r e )  change  i s  an a n a l o g  o f  t h e  p r e s s u r e  l o s s  on e x i t  f rom a p o r o u s  body 
in [14]. In contrast to the changes in macroscopic quantities in the kinetic theory of gases, 
beginning at some Knudsen number value, this change increases with decrease in Kn, i.e., as 
will be shown below, with increase in velocity u L (Table i). This is related to the fact 
that in the nonequilibrlum layer referred to above two one-sided distribution functions 
"meet" each other, one of which considers the hydrodynamic resistance of the immobile par- 
ticles. We will note that for small L/R" the magnitude of this discontinuity is also large 
for large Kn. A phenomenological derivation of the boundary conditions on the porosity dis- 
continuities was presented in [15, 16]. We note that in the present case, in contrast to 
those studies, the density in one of the media n L is fixed quantity up to the very boundary 
x = i. The presence of the density discontinuity is the result of the effect on mass trans- 
port of the boundary conditions at x = I. 

Using Eq. (19) and the expression for C obtained by solving the algebraic system, we 
find 

g2~ L 

UL= ( 4 _ _ 2 e _ _ e 2 +  A ) ~ l / 2  " (21) 

In a slmilar manner we can solve the problem of gas filtration through a porous body 
when the gas density at the input (x = 0) no and output (x = l)nL are known. In that case 
Eq. (ii) must satisfy different boundary conditions. A general solution will not be presented, 
but we will note that at L/R >> 1 the filtration rate (like the evaporation rate) has the 
form 

82VL ~ i/28~L R 

UL = --~!(~---- '~ = 9(1 - - s ) L  KnAI(Kn) (22) 

We note that the case of diffusion flow (F = 0) oan be studied approximately by writing 
the collision integral on the right of Eq. (i) in the relaxation form l(f) = (fo -- f)/T, where 
fo.is a Maxwell function without mass �9 velocity, ~=%e~ ~ef=l-i~-~d I. It can easily be shown 
that the expression obtained in this case for the diffusion coefficient gives a value close 
to the values obtained from the relationships derived in [17] based on the theory of mean 
molecular freepath length with the assumption that interaction of gas molecules with each 
other and with the spheres is of identical character. We will discuss the accuracy of this 
approximation below, noting meanwhile that the mean molecular free path length permits study 
of more complex problems of this type (with consideration of adsorption, heterogeneous re- 
actions, particle evaporation) [17-19] in regimes close to free molecular. 

We will compare u L values obtained in the free molecular regime (Kn + ~) with available 
theoretical results. If we define the permeability • from the relationshi p 
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TABLE 2. Calculated [Eq. (26)] and Experimental [22] Values 
of Permeability • vs Kn for Catalyzer "B" for Hydrogen and 
Nitrogen Filtration 

Kn 

ao  

85,5 
61,9 
40,8 
30,7 
24,6 
20, 1 

,,.lo. em2/.Sec; H2 

expt .  theory 

0,333 
0,344 0,334 
0,341 0,335 
0,347 0,336 
0,342 0,337 
0,353 0,338 
0,337 0,339 

I<n 

ao 

45,0 
31,9 
21,2 
16,1 
12,9 

~r 10% cm2/sec ; N 2 

expt. theory 

0,893 
0,977 0,901 
0,988 0,905 
0,951 0,911 
0,973 0,916 
0,940 0,921 

nuL  ~ = ~  d X  (23)  

t h e n  f r o m E q .  (21)  a s  Kn + ~ we h a v e  

~ = a  ~ l - - e  (24) 

where the numerical factor a = ~x/~/(8 + ~) ~ 0.159. A similar expression for ~ follows 
from [i], with a = 0.171, and from [20], where a = 0.122 with consideration of the correction 
factor q (the convolution coefficient) introduced upon comparison with experimental data in 
the case of low porosity values e = 0.4 (without this factor a ~ 0.172). We will also note 
that the mean molecular free path length referred to above gives a value of a = 0.251. The 
same result follows from [I] for the case of mirror reflection of molecules from the particle 
surface, which is equivalent to elastic interaction of molecules among themselves [21]. 

We will now turn to a comparison of the results obtained with the experimental data of 
[22]*, in which the permeability of porous catalyzers was measured. A generalized expression 
was presented in [22] for the gas flow N(r) in a unit cylindrical capillary of radius r in a 
porous body, with the aid of the equality N = ~N(r). It was assumed that, generally speaking, 
mass transport takes place only in certain pores, termed transport pores, i.e., c T ~ c. The 
experiments used various gases and catalyzers (laboratory preparations of ZnO, CuO, A1203) 
at 20 ~ p ~ 190 kPa, which achieved flow over a wide Knudsen number range. 

In order to compare theoretical ~ values with the experimental results of [22] for the 
case L/R >> I, in Eq. (22) we must transform from particle radius R to pore radius r. Ac- 
cording to [ii], for a highly porous body the mean pore clearance ld = 2r and the mean pore 
size d m are related by the expression kd = ~dm/(l -- e), where for spheres d m = 2/3d, for .... [ 
round cylinders d m = d. Taking d m = d, we find 

I--8 
R = - r. (25)  

8 

For one of the catalyzers studied in [22] (denoted as catalyzer "B") practically all 
pores were transport pores (eT = E = 0.70) and had approximately equal radii. For this cat- 
alyzer, we find from Eqs. (22), (23), (25) 

(26) 
\ ~ /  9 Kn A~ (Kn) 

Substituting in Eq. (26) the effective pore radius r and porosity e determined experimentally 
in [22], we can compare the results with the experimental ~ values (we note that in [22] 
and e were measured independently). In performing the comparison it should be kept in mind 
that Kn and the parameter K = %/2r used in [22] are related, according to Eq. (25), by the 
expression Kn = 2eK/(l -- @. From Table 2 it is evident that Zex and u coincide with good 

accuracy. 

*In [22] the experimental data were only presented graphically, but numerical experimental 
results (also for a larger number of catalyzers) were kindly provided us by P. Fort (Insti- 
tute of Theoretical Chemistry, Czechoslovak Academy of Sciences, Prague), to whom the authors 

expressed their gratitude. 
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TABLE 3. Calculated [Eq. (27)] and Experimental [22] Values 
of u/u= vs Kn for Catalyzers "A" and "D" for Nitrogen Fil- 
tration 

Kn 

oO 

13,91 
10,28 
6,71 
5,06 
4,06 
3,34 

expt. 

1,081 
1,057 
1,061 
1,043 
1,088 
1,064 

x/x~, cA~ 

theory 

1 
1,029 
1,039 
1,059 
1,077 
1,094 
t,112 

Kn 

oo 

5,46 
3,98 
2,56 1,93 1,54 1,28 

x/x~, ~D~ 

I theory expt. 

I 1 
1,023 1,072 
1,021 1,096 
1,061 1,143 
1,137 [ 1,183 
1,152 1,226 
1,103 1,270 

For the other catalyzers the permeability • is described by an expression analogous to 
Eq. {26), but containing two porosities, ~ and ~t. The experiments did not determine E t 
directly, but rather ~ = et[q, with only possible limiting values being known for q. Thus 
for these catalyzers it is more convenient to compare values of the ratio •215 with experi- 
ment z 

• [Kn AI (Kn)]Kn~ 8 -I-" 
= ~ ~ . 

' • KnAI(Kn) "i8 KnAI(KU; (27) 
These calculated u/• values can be compared with experimental data for the quantity Uexp/DK, 
where DK = 2/3r~ is the effective diffusion coefficient in the porous body, determined from 
experimentally determined r and ~values. These values are comparable because according to 
expressions presented in [22], ~ + D K as K + =.- It is evident from Table 3 that for cata- 
lyzers "~' (E = 0.74) and "D" (c = 0.64) the agreement is completely satisfactory. 

Thus, the theoretical results obtained and the corresponding experimental data (Tables 
1-3) indicate that curves of u L as a function of i/Kn (Fig. 2) initially increase very slowly 
from their free molecular values. Then, approximately at Kn = i, according to Eq. (21), a 
more abrupt increase in u L begins, leading to a linear dependence u L ~ i/Kn, characteristic 
of a viscous gas flow. Finally, with further increase in Kn in the case of evaporation u L 
exits to a constant value, dependent solely on E and VL: 

82~L 

UL= (4 __ 28 __ ~2) i12 , 

which as E ~ 1 tends to ULe = --Vl/~ z/2, which corresponds to evaporation from an open surface. 
We note that in the limit L § 0 Eq. (21) for c # 1 does not lead to the value u L = CULo, 
corresponding to evaporation from a perforated surface; this apparently is a reflection of 
the error of the moment method in the given limiting case. In the filtration problem u L does 
not exlg to a constant value, and the dependence UL(Kn) found here is supported qualitatlvely 
by the experlmental data of [20], obtained for E : 0.4, for all Kn. 

It follows from the above that Eqs. (21), (22) can be used to calculate the evaporation 
rate and mass transport through a porous layer of arbitrary thickness in the range l~Kn~m, 
i.e., in free molecular and intermediate gas flow regimes. As for the range of low Kn, here 
coincidence of experlmental and calculated results can be expected only for sufficiently thin 
layers. In the general case of low Kn one must introduce into the permeability n in the 
linear portion of the function UL(iKn) a correction coefficient Wo(~) [23, 24], which is de~ 
pendent on E and considers the "crowding" of the flow in the porous medium. Since according 

u,/u,~ 

~0 

o, oi 

/ 
J 

o,1 /,o ~o 

f ~  

Fig. 2. Value of u L normalized to u L as 
Kn § ~(u| vs i/Kn for evaporation from 
porous body with e = 0.9, L/R = i00. 
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to Eq. (22) in the continuous medium regime (Kn -> O) the permeability x�9 = e2dUp/18(l -- E)B 
(similar expressions also follow from [2, Ii]), the with consideration of Wo(e) we have: 

~d~P W 
~o---- 1 8 ~ Z ~ ) ~  ' .(~), 

where, for example, for e = 0.9 the quantity W = e2Wo(~) : 0.32. A table of W(~) values was 
presented in [23], which were compared with experimental results. In particular, it was 
shown tht the Carmen--Kozeny expression for permeability (having the form ead2p/180(l- ~)2~ 
in our notation) is applicable over the range 0.26 < e < 0.7. 

Comparison with studies of gas filtration in which an expression for the gas flow valid 
over the entire range of Knudsen number change was used, written in the form of a superposi- 
tion of Knudsen an viscous flows, shows that the greatest quantitative divergence of results 
occurs in the intermediate Knudsen number range. Thus, at Kn = 3 the respective relative 
filtration coefficients k/k~ [ii] and •215 differ by approximately 16%. 

NOTATION 

Pc, saturated vapor pressure; e, porosity; I, mean molecular free path length; Kn = I/r, 
Knudsen number; d = 2R, particle radius; k, Boltzman's constant; m, gas molecule mass; 0 = mn, 
gas density; v, gas flow velocity in porous body; nd, number of particles per unit volume of 
porous body; x = X/L, dimensionless coordinate; ~, kinematic gas viscosity. 
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NONSTEADY UNIDIRECTIONAL DISCHARGE OF AN INSTANTANEOUSLY HEATED GAS 

WITH CONSTANT FORCED FLOW FROM A CYLINDER 

E. T. Bruk-Levinson, O. G. Martynenko, and E. A. Romashko UDC 533.17:536.414 

A numerical study is made of the problem of unidirectional discharge of an in- 
stantaneously heated gas from a half-open cyllnder when the gas is pumped 
through the cylinder in the direction of the open end. 

Calculation of thermohydrodynamic fields in half-open systems is of considerable interest 
for through-type electrlc-discharge quantum generators, where the uniformity of the medium 
has a significant effect on the working parameters of the system. 

Apart from the specifics of the design of the system, the essence of the hydrodynamic 
process which accompanies the pressure jump in the working volume of the generator resulting 
from the discharge can be remodeled by the classical problem of unidirectional discharge of 
an instantaneously heated gas from a cylinder with one end open to the atmosphere under finite 
pressure [1]. It was shown in the solutlon of this problem that the initial pressure jump is 
accompanied by nonlinear oscillations of an amplitude which decreases slowly relative to the 
characteristic time scale. This result is in qualitative agreement with the test data ob- 
tained in [2] on a rarefaction wave tube. The slow return of uniformity in a system based 
on the principleof perlodic-impulsive action when the only damping source is the local resis- 
tance at the open end of the cyllnder (the friction against the walls has almost no effect 
on damping) stimulates searches for additlonal means of influencing the system parameters -- 
one of which may be pumping the gas through the cylinder. 

The present artlcle studies gasdynamic processes in a cylindrlcal volume. One end of 
the cylinder is connected to the atmosphere. The gasdynamic processes are initiated by in- 
stantaneous heating of a gas in some middle section of the cylinder. We will study how the 
processes are affected by pumping the gas along the cylinder axis in the direction of the 
open end. 

As usual in the gasdynamlcs of rapidly occuring processes, we will assume that the phe- 
nomena of viscosity, heat conduction, and external heat exchange have a slight effect on the 
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